伽罗瓦理论 童书●育儿
爱德华兹
(2010-9)
29元 / 152页
9787510027420
标签: GTM 代数 数学 抽象代数 伽罗瓦理论 Galois
《伽罗瓦理论》内容简介:This exposition of Galois theory was originally going to be Chapter 1 of thecontinuation of my book Fermat's Last Theorem, but it soon outgrew anyreasonable bounds for an introductory chapter, and I decided to make it aseparate book. However, this decision was prompted by more than just thelength. Following the precepts of my sermon "Read the Masters!" [E2], Imade the reading of Galois' original memoir a major part of my study ofGalois theory, and I saw that the modern treatments of Galois theory lackedmuch of the simplicity and clarity of the original. Therefore I wanted towrite about the theory in a way that would not only explain it, but explain itin terms close enough to Galois' own to make his memoir accessible to thereader, in the same way that I tried to make Riemann's memoir on the zetafunction and Kummer's papers on Fermat's Last Theorem accessible in myearlier books, [El] and [E3]. Clearly I could not do this within the confinesof one expository chapter.
(2010-9)
29元 / 152页
9787510027420
标签: GTM 代数 数学 抽象代数 伽罗瓦理论 Galois
《伽罗瓦理论》内容简介:This exposition of Galois theory was originally going to be Chapter 1 of thecontinuation of my book Fermat's Last Theorem, but it soon outgrew anyreasonable bounds for an introductory chapter, and I decided to make it aseparate book. However, this decision was prompted by more than just thelength. Following the precepts of my sermon "Read the Masters!" [E2], Imade the reading of Galois' original memoir a major part of my study ofGalois theory, and I saw that the modern treatments of Galois theory lackedmuch of the simplicity and clarity of the original. Therefore I wanted towrite about the theory in a way that would not only explain it, but explain itin terms close enough to Galois' own to make his memoir accessible to thereader, in the same way that I tried to make Riemann's memoir on the zetafunction and Kummer's papers on Fermat's Last Theorem accessible in myearlier books, [El] and [E3]. Clearly I could not do this within the confinesof one expository chapter.